Mark scheme - Nature of Quantities

Questio n		Answer/Indicative content	Mark s	Guidance
1		A	1	
		Total	1	
2		B	1	
		Total	1	
3	a	Arrow vertical down and an arrow opposite to the frictional force. Both arrows labelled correctly.	M1 A1	Allow weight / mg / W for the downward arrow and tension / T / 'force in rod' / 'force in tow bar' /'driving force' for the 'upward' arrow
	b	$\begin{aligned} & \left(W_{\mathrm{s}}=\right) 1100 \times 9.81 \times \sin 10^{\circ} \text { or } \\ & 1100 \times 9.81 \times \cos 80^{\circ} \\ & \left(W_{\mathrm{s}}=1874 \mathrm{~N} \text { or } 1900 \mathrm{~N}\right) \end{aligned}$	C1 A0	Allow g instead of value
	c	$\begin{aligned} & \text { force }=1900+300 \\ & \text { force }=2200(\mathrm{~N}) \end{aligned}$	A1	Allow $1870+300=2170(\mathrm{~N})$
	d	(distance $=$) $120 / \sin 10^{\circ}$ or 691 (m) (work done =) 2200×691 work done $=1.5 \times 10^{6}(\mathrm{~J})$	C1 C1 A1	Allow ECF from (c) Allow ECF from an incorrect attempt at first mark.
	e		C1 C1 A1	Allow ECF from (c) $\text { Allow } X(=F L / E A)=\frac{2174 \times 0.5}{2.0 \times 10^{11} \times 1.1 \times 10^{-4}}$ Allow 2 marks for $1.2 \times 10^{-5} ; 1.2 \times 10^{-2} \mathrm{~m}$ used as radius Allow answer between 4.7 and $5.1 \times 10^{-5}(\mathrm{~m})$
		Total	10	
4		A quantity that has both direction and magnitude. Correct example given, e.g. velocity.	B1	Note: The B1 mark is for a correct statement and a correct example.

2.3 Nature of Quantities

1		D	1	
		Total	1	
1 1		At $t=0$ (and $t=15,30$) the (magnitude of the) centripetal force equals $R-W$ (as only vertical forces act on the tourist)	B1	Allow at $t=0$ (or the bottom of the circle) the centripetal force is provided by the resultant/ upwards/vertical force
		Total	1	
$\begin{array}{\|l\|} 1 \\ 2 \end{array}$		D	1	
		Total	1	
$\begin{array}{\|l\|} 1 \\ 3 \end{array}$		A	1	
		Total	1	
$\left\lvert\, \begin{aligned} & 1 \\ & 4 \end{aligned}\right.$		B	1	
		Total	1	
$\begin{array}{\|l\|} 1 \\ 5 \end{array}$		c	1	
		Total	1	
1 6		D	1	Examiner's Comments This question showed that candidates had generally forgotten that the resultant force does not have to be in the direction of travel, hence all three statements could be correct, giving option D. This question provided opportunities for middle-grade candidates.
		Total	1	
$\begin{array}{\|l\|l\|} \hline 1 \\ 7 \end{array}$		C	1	
		Total	1	
$\begin{array}{\|l\|l} 1 \\ 8 \end{array}$		B	1	
		Total	1	
$\begin{array}{\|l\|l\|} \hline 1 \\ 9 \end{array}$		A	1	
		Total	1	
2	a	$\begin{aligned} & 2 \times T^{2}=4.8^{2} \text { or } 2 T \sin 45^{\circ}= \\ & 4.8 \text { or } T=4.8 \sin 45^{\circ} \\ & \mathrm{T}=3.39(4)(\mathrm{N}) \end{aligned}$	B1 B1	Note: $\sin 45^{\circ}=\cos 45^{\circ}$ Note: T must be given to at least 3 SF

		c c the ball has the same speed (of $17 \mathrm{~m} \mathrm{~s}^{-1}$) but is at different (either at 60° or 30°) angle to the horizontal. larger horizontal velocity (second trajectory) so travels further or higher bounce (first trajectory) so less drag from grass so travels further.	B1	B1

2.3 Nature of Quantities

		- rotation lowers height of front wheel. Conclusion based on argument(s). The maximum gap width is smaller.	B1	conclusion based on argument(s). So no change in maximum gap width.
		Total	7	
$\begin{aligned} & 2 \\ & 7 \end{aligned}$		$\begin{aligned} & \text { resultant force }=\left(7.0^{2}+5.0^{2}-2\right. \\ & \times 7.0 \times 5.0 \times \cos 40)^{1 / 2} \\ & \text { resultant force }=4.51(\mathrm{~N}) \\ & \text { acceleration }=4.51 / 0.320=14 \\ & \left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 C1 A1	Allow: resultant force $=\left[(7.0-5.0 \times \cos 40)^{2}+(5.0 \times \sin 40)^{2}\right]^{1 / 2}$ Allow full marks for a correct scale drawing to determine the resultant force; resultant force $=4.5 \pm 0.1 \mathrm{~N}$ Allow full marks for resolving into horizontal and vertical components and combining correctly.
		Total	3	
$\begin{aligned} & 2 \\ & 8 \end{aligned}$	i	Straight line drawn from the bottom of the $9.0 \mathrm{~m} \mathrm{~s}^{-1}$ vector to the end of the $4.2 \mathrm{~m} \mathrm{~s}^{-1}$ vector	B1	Ignore incorrect / omitted direction of resultant vector Ignore any other additional lines drawn
	ii	$\begin{aligned} & v^{2}=9.0^{2}+4.2^{2}-2 \times 9.0 \times 4.2 \times \\ & \cos 50^{\circ} \\ & v=7.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ OR length of resultant vector line measured and some calculations $v=7.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	C1 A1 C1 A1	Allow other correct variants of this method Note answer to 3 SF is 7.07 Allow length of resultant vector in the range $5.4-5.6 \mathrm{~cm}$ Allow $\pm 0.20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		Total	3	
$\begin{aligned} & 2 \\ & 9 \end{aligned}$		$W(=m g)=8.0 \times 9.81$ $F=(W \sin 30=78.5 \times 0.5=) 39$ (N) $R=(W \cos 30=78.5 \times 0.87)=68$ (N)	C1 A1 x 2	$=78(.5)(\mathbf{N}) \text { not } 80(\mathbf{N})$ Allow 8g Allow $1 / 2$ for F and R the wrong way round Credit full marks for use of a scale drawing which gives answers correct to $\pm 2 \mathrm{~N}$ Special case: Allow $2 / 3$ for use of $W=80(\mathrm{~N})$ giving $F=40(\mathrm{~N})$ and $R=69(\mathrm{~N})$

				Examiner's Comments Most candidates were able to answer this question easily, although a few got their answers for F and R the wrong way around.
		Total	3	
3 0	i	$\begin{aligned} & \text { speed }=\frac{2 \times \pi \times 0.60}{20} \\ & \text { speed }=0.19\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	
	ii	Displacement is the direct distance of the locomotive from A, so the graph is symmetrical about $t=10 \mathrm{~s}$. At $t=20 \mathrm{~s}$ it returns back to \mathbf{A} or at $t=10 \mathrm{~s}$ it is 1.2 m from \mathbf{A} or at $t=10 \mathrm{~s}$, it is at C.	B1 B1	
		Total	4	
3 1	i	Any two from: - Direction of g for Earth and Mars are in opposite directions - For small values of r / r < about 4.4 ($\times 10^{10} \mathrm{~m}$) g for Earth is greater or resultant g is towards the Earth - At r about $4.4\left(\times 10^{10} \mathrm{~m}\right)$ the g values are the same/AW - Inverse square law for g for either planet causes curve near to either planet's surface/AW - Zero point for (resultant) g is further from the Earth (than the midpoint) since Earth has a larger mass than Mars - $\quad g$ at Earth's surface is larger than g at surface of Mars because Earth has a larger mass than Mars	B1x2	Allow field / (gravitational) force for g Allow for r values larger than $4.4\left(\times 10^{10} \mathrm{~m}\right) \mathrm{g}$ for Mars is greater or resultant g is towards Mars Examiner's Comments Most candidates mis-read the question and tried to describe the shape of the curve, rather than explain why the curve has that shape. Many candidates also mis-used the term 'exponential' to describe a curve that is related to $1 / \mathrm{r}^{2}$. Others thought that the graph showed the effect of Mars and the Earth on each other, rather than on a small mass between them. They went on to describe what happened when Mars and Earth were separated by an increasingly large distance. It is good practice to be specific about which section of the graph you are talking about. 'When r is below $2.0 \times 10^{10} \mathrm{~m}$ ' is much clearer than 'At the start'. Potential, potential difference, potential energy, field strength and force These terms are all very similar yet subtly different and with differing formula. Be careful you know which is which.
	ii	Any valid equation relating $g_{\text {Earth }}$ and $g_{\text {Mars }}$ e.g. $G M_{\text {Earth }} / \mathrm{rE}^{2}=\mathrm{GM} \mathrm{Mars}^{2} / \mathrm{rm}^{2}$ ratio consistent with values above	C1 A1	

				tension T into its vertical component - both $T \sin 30^{\circ}$ and $T \cos 60^{\circ}$ were acceptable. Exemplar 3 $\begin{aligned} m & =(50 \times 9.81) \times 0.7 \\ & =343.35 \\ m & =F \times d \\ 343.35 & =1.5 \times F \\ F & =228.9 \\ \sin 30^{\circ} & =\frac{x}{T} \\ & =\frac{228.9}{\sin 30} \\ & =457.8 \mathrm{~N} \approx 460 \mathrm{~N} \end{aligned}$ In this exemplar the candidate has clearly shown the working to answer the question. Initially the candidate has calculated the clockwise moment by multiplying the force (mass of $50(\mathrm{~kg})$ by 9.81) by $0.7(\mathrm{~m})$. This gains two marks. The candidate's answer could have better if the candidate had written on the left-hand side "clockwise moment" rather than "m", however, it is implicit from the candidate's working the meaning of " m ". The candidate has then clearly shown that the anticlockwise moment is equal to the clockwise moment and determined correctly the perpendicular force or vertical force. The candidate then correctly relates the force T to $\sin 30^{\circ}$ and the vertical force and evaluates the answer as 457.8 N before indicating that this is approximately 460 N . Including the 457.8 is appropriate in these type of show questions.
		Total	4	
$\begin{aligned} & 3 \\ & 3 \end{aligned}$	i	$(t=) \frac{6.3}{9.8(1)}$$(t=) 0.6(42 \ldots . . . \mathrm{s})$	M1 A0	Allow other correct methods, e.g:
				$(t)=\sqrt{\frac{2 \times 2.0}{9.8(1)}} \text { or }(t)=\frac{2 \times 2.0}{6.3}$ Not $a=10 \mathrm{~m} \mathrm{~s}^{-2}$ Note t must be the unknown Examiner's Comments There were some convoluted answers. A number of candidates gained

				credit but wasted time by solving a quadratic equation. Some candidates assumed that the vertical velocity was an average and determined the time and then just multiplied by two without explanation - this did not gain credit. Clear explanations of the method are used to answer these types of "show" questions.	
	ii	$\left(v_{H}=\right) \frac{18}{0.64} \text { or } \frac{18}{0.6}$$\left(v_{\mathrm{H}}=\right) 28\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { or } 30\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1 A0	Note v must be the unknown	
				Examiner's Comments This part was answered better although some candidates tried using an equation with acceleration.	
	$v=\sqrt{6.3^{2}+30^{2}}$$v=31\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$		C1	$v=\sqrt{6.3^{2}+28^{2}}$ Allow trigonometry methods	
			$v=29\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Note 940 scores one mark Examiner's Comments A pleasing number of candidates determined the magnitude of the velocity correctly, Some correctly used trigonometry methods.		
		Total		4	
$\begin{array}{\|l\|} 3 \\ 4 \end{array}$	i	Example (not to scale):	B1 B1	horizontal arrow (judge by eye), in the direction shown arrow drawn at an angle of 60° to the horizontal (angle must be shown), in the direction shown	
	ii	Example (not to scale): (Can apply principle of) conservation of momentum (since no external forces are acting)	B1 B1	arrow drawn at an angle of 60° to the horizontal (angle must be shown), in the direction shown Examiner's Comments This was not an easy question but, even so, a good number of candidates did well. The marks were given for the direction (rather than for the magnitude) of the momentum vectors. Some of the common errors were: - forgetting to label relevant angles - not using arrows to show direction - drawing a vector triangle without any indication of which arrow was meant to be the final momentum.	
		Total	4		

3 5		i	4.4-4.6 (N)	B1	
		ii	Weight of cylinder 3.5 cm vertically (judge by eye) Correct closed triangle drawn including T_{A} Correct directions indicated for weight and T_{A} and $T_{\mathrm{A}}=6.4 \pm 0.2$ (N)	M1 M1 A1	
		ii	$39 \pm 1^{\circ}$	A1	Allow ECF from (b)(ii) for trigonometry methods
			Total	5	
3	a		Correct pattern Correct direction of the field	B1	Note: At least five field lines must be drawn and of these, two must be perpendicular (by eye) to the surface of the sphere and plate Note: This may be shown on just one line Examiner's Comment Most candidates drew decent field patterns and showed the correct direction of the electric field. It is difficult to draw curved field lines, but those who were careful and had the field lines perpendicular at both the surface of the sphere and the metal plate were rewarded.
	b		(Electric potential) is the work done per (unit) charge in bringing a positive charge from infinity (to the point).	B1	Allow: work done / energy required to bring a unit positive charge from infinity (to the point) Examiner's Comment This was not well-answered; the modal mark was zero. Definition for electric potential lacked precision and often made no reference to a 'unit positive charge' or 'per unit positive charge'. At times, other quantities such as electric field strength and gravitational field strength were being defined. This was a missed opportunity -definitions just need to be learnt.
	c	i	$V=\mathrm{Q} / 4 \pi \varepsilon_{0} \mathrm{r}$ (Allow any subject) $\begin{aligned} & Q=4 \pi \times 8.85 \times 10^{-12} \times 0.015 \times \\ & 5000 \end{aligned}$ $Q=8.3(4) \times 10^{-9}(\mathrm{C})$	C1	Note using $E=V / d$ with $E=\Omega / 4 \pi \varepsilon o r^{2}$ is wrong physics and hence scores zero Note if the value of ε_{0} is not given here, it could be implied in the correct 3sf answer Allow any subject here if the answer is given to more than 2 sf Allow the use of $1 / 4 \pi \varepsilon_{0}=9 \times 10^{9}$ Examiner's Comment By contrast to the last question, the answers here were perfect. Correct values were substituted into the equation for electric potential to show that the charge was that stated in the question. In a 'show' question, always give the final answer to more significant figures than the required answer. It was good to see many scripts with the final answer written as $8.34 \times 10^{-9} \mathrm{C}$.

	ii	1 (electric force =) $1.7 \times 10^{-2} \times$ tan4.0 (Allow any subject) $\begin{aligned} & \left(\text { electric force }=1.19 \times 10^{-3} \mathrm{~N}\right) 2 \\ & E=1.2 \times 10^{-3} / 8.3(4) \times 10^{-9} \\ & E=1.4 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \end{aligned}$	M1 (A0) C1 A1	Not $1.7 \times 10^{-2} \sin 4$ or $1.7 \times 10^{-2} \cos 86$ Allow $1.7 \times 10^{-2} \times \sin 4 / \cos 4$ Allow 2 marks for $1.45 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$, $8.3 \times 10^{-9} \text { used }$ Allow 2 marks for $1.43 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$, $1.19 \times 10^{-3}(\mathrm{~N})$ used Examiner's Comment This was a good discriminator with high-scoring candidates either using triangle of forces, or resolution of forces, to determine the electric force on the sphere. The value of the force was given so that it could be used to answer the next question. More than half of the candidates correctly calculated the electric field strength using the information provided in (c)(i) and (c)(ii)1. Some candidates used the elementary charge rather than the value from (c)(i) to calculate the field strength; this gave an incorrect answer of $7.5 \times 10^{15} \mathrm{~N} \mathrm{C}^{-1}$.
		Total	8	
3	i	The direction of the electric field due to the negative charge is to the left and right for the positive charge. The magnitude of the electric field strength due to the positive charge is smaller than that for the negative charge (because of greater distance). (Hence the resultant electric field strength is to the left.)	B1 B1	
	ii ii	$\begin{aligned} & \text { energy }= \\ & \frac{Q q}{4 \pi \varepsilon_{0} r}=\frac{\left(1.60 \times 10^{-19}\right)^{2}}{4 \pi \varepsilon_{0} \times 3.0 \times 10^{-10}} \\ & \text { energy }=7.67(2) \times 10^{-19}(\mathrm{~J}) \\ & \text { energy }=4.8(\mathrm{eV}) \end{aligned}$	C1 C1 A1	
		Total	5	
8	i	$\begin{aligned} & F=\left(m v^{2} / r=\right) 8.0 \times 1.5^{2} / 2.0 \\ & F=9.0(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow answer to 1s.f. Examiner's Comments Question 4(b)(ii) proved very difficult and highlighted poor understanding of circular motion. Almost all candidates described the centripetal force as an additional force that had appeared out of nowhere. This centripetal force 'pulled the suitcase inwards' (or, in some cases, outwards) or 'balanced the frictional force' or 'added to the frictional force' and so on.

		or correct comparison of momentum and kinetic energy. There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence. Level 1 (1-2 marks) Has limited explanation of terms or limited comparison of momentum / kinetic energy. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		- Total p after collision $=0.15 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - $\quad E_{k A}$ after collision $=0.0009375 \mathrm{~J}$ - $\quad E_{\mathrm{KB}}$ after collision $=0.0140625 \mathrm{~J}$ - Total E_{k} after collision $=0.015 \mathrm{~J}$ - Collision is elastic since E_{k} conserved - Expt 2: - p after collision $=0.15 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - E_{k} after collision $=0.005625 \mathrm{~J}$ - Collison is inelastic since E_{k} not conserved - Momentum conserved in both collisions
		Total	6	
4 1	i	```vertical component =30.0 sin}(7\mp@subsup{0}{}{\circ})\mathrm{ or 30.0 cos(20} vertical component =28.2(m s-1)```	A1	Allow 2 SF answer of 28
	ii	Evidence of $v^{2}=u^{2}+2 a s$ and $v=$ 0 or $g h=1 / 2 u^{2}$ $h=\frac{28.2^{2}}{2 \times 9.81}$ (Any subject) $h=40.5(\mathrm{~m})$	C1 M1 A0	Allow v and u interchanged; a and g interchanged Allow use of candidate's answer for (a)(i) at this point Ignore sign $\text { Allow }{ }^{h=\frac{28^{2}}{2 \times 9.81} \text { or }(30 \sin (70))^{2} /(2 \times 9.81)}$ No ECF from (a)(i) for the second mark
	ii	The ball has horizontal motion / velocity (AW)	B1	Allow idea of horizontal e.g. sideways, forwards Not: 'moving' unqualified

	$\begin{aligned} & i \\ & v \end{aligned}$	$\begin{aligned} & \text { (horizontal velocity }=\text {) } 30.0 \mathrm{cos} \\ & 70^{\circ} \text { or } 10.2 \ldots .\left(\mathrm{m} \mathrm{~s}^{-1}\right) \text { or } 30.0 \mathrm{sin} \\ & 20^{\circ} . \\ & E_{\mathrm{k}}=1 / 2 \times 0.057 \times 10.26^{2} \\ & E_{\mathrm{k}}=3.0(\mathrm{~J}) \end{aligned}$	C1	Allow 1 SF answer Not 22 (J), $v=28$ used Not 23 (J), v=28.2 used Not $140(\mathrm{~J}), v=70$ used Examiner's Comments Part (i) was particularly well answered by 95% of all candidates. Nine out of ten candidates scored full marks in part (a)(ii), as they remembered that the question asks to show that the maximum height is around 40 m . Working for this type of question is essential. In part (a)(iii), three quarters of all candidates correctly talked about the ball still having a horizontal velocity (which wasn't zero) and therefore still possessing some KE. The key to this part (a)(iv), remembered by most candidates, was to use the horizontal component of velocity to find the KE at the maximum height. Some used the initial speed and others used the initial vertical velocity component found in part (a)(i).
		Total	6	
	i	$87.4 \cos 50^{\circ}$ or $68.0 \sin 10^{\circ}$ $F=68.0(\mathrm{~N})$	C1	Allow $87.4 \sin 40^{\circ}$ or $68.0 \cos 80^{\circ}$ Allow cosine and sine rules being used, e.g. $\begin{aligned} & F^{2}=68.0^{2}+87.4^{2}-2 \times 68.0 \times 87.4 \times \cos 50^{\circ} \text { or } \\ & F=87.4 \times \sin 50^{\circ} / \sin 80^{\circ} \text { or } \mathrm{F}=68.0 \times \sin 50^{\circ} / \sin 50^{\circ} \end{aligned}$ Allow 2 SF answer here Examiner's Comments The question has a clue for making a start on this question. Most candidates did resolve the two tensions in the cables vertically. The majority of the responses were well-structured and demonstrated excellent understanding of vectors. Although not straightforward, many candidates used the correct angle when determining the vertical components of the forces. The correct answer of 68.0 N appeared on most scripts. A small number of candidates got 1 mark for just getting one of the components correct. A very small number of candidates got the correct answer by using trigonometry and triangle of forces. This is not what was expected, but full credit was given for this alternative approach. Correct responses will always score marks, even when the candidates choose not to go along the path designed by the examiners. This different approach is illustrated in the exemplar 6 below. Exemplar 6

				Calculate the total vertical force F supplied by cables A and B by resolving the tensions in cables A and B. $\begin{aligned} F^{2} & =A^{2}+B^{2}-2 A B \cos \theta \\ F & =\sqrt{68^{2}+87.44^{2}-2 \times 68 \times 87.4 \times \cos 50} \\ & =\sqrt{4622.329 \ldots} \\ & =67.98 \ldots \mathrm{~N} \\ & \approx 68.0 \mathrm{~N}(35 \mathrm{f}) \end{aligned}$ $F=.$ \qquad 68.O N [2] The candidate has used a triangle of forces and the cosine rule to determine the net downward. As it happens, the F in this calculation is the weight of the dolphin. However, it is numerically equal to the total upward vertical force. This concise and perfect alternative technique picked up the maximum marks.
	ii	$68=m \times 9.81$ $m=6.9(\mathrm{~kg})$	C1 A1	Possible ECF from (c)(i) Allow $68=m g$ Note answer to 3 SF is $6.93(\mathrm{~kg})$ Allow $g=9.8$; this gives $6.94(\mathrm{~kg})$ Not $g=10$; this gives $6.8(\mathrm{~kg})$. Only the first C1 mark can be scored Examiner's Comments Almost all candidates correctly used $W=m g$ to determine the mass of the dolphin. Full marks were frequently picked up because of error carried forward (ECF) from (c)(i). There were very few cases of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ being used; this was penalised because $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$ is given in the Data, Formulae and Relationship Booklet.
		$E=\frac{\text { stress }}{\text { strain }} \quad \begin{aligned} & \text { (Any } \\ & \text { subject) } \end{aligned}$ (Tension and E increase by the same factor of 1.29) $\text { ratio = } 1.0$	C1	Allow $E=\frac{\sigma}{\varepsilon}$ or $E=\frac{F L}{A x}$ (Any subject) Allow 1 SF answer Allow 1:1 Examiner's Comments This question on the equation for Young modulus E was well-answered with most candidates picking up one or more marks. The extension x of a wire is given by the expression $\mathrm{X}=\frac{F L}{E A}$, where F is the tension in the wire, L its length and A its cross-sectional area. In this question, the extension $x \propto \frac{F}{E}$. Since both F and E increase by the same factor of 1.29, this meant that the ratio is 1.00 . The most frequent incorrect answers were 1.29 and 1.29^{-1} or 0.78 . The majority of the candidates in the upper quartile picked up 2 marks. Exemplar 7

				(iii) The cables \mathbf{A} and \mathbf{B} have the same length and cross-sectional area. The material of-cable B 'has-Young modulus $1.29 E$, where E is the-Young modulus of the material of cable A. ratio $=$ \qquad [2] This exemplar shows a response from a top-grade candidate. The solution is much more elaborate and the response of 0.996 is given to 3 significant figures. A perfect solution that earned this candidate 2 marks.
		Total	6	
	i	(For circular motion) there must (always) be a resultant force towards the centre The resultant force is not always vertical/sometimes has a horizontal component This can only be provided by friction/cannot be provided by R and W / R and W are always vertical/only F is horizontal	$\begin{gathered} \text { B1 x } \\ 2 \end{gathered}$	any 2 from 3 marking points Allow F provides the horizontal (component of the) centripetal force
	ii	Sine wave with period 30 min and amplitude $0.050(\mathrm{~N})$ Correct phase, i.e. negative sine wave	B1 B1	Must start at the origin
	ii	$\begin{aligned} & F=0.050 \cos 40^{\circ} \\ & F=0.038(\mathrm{~N}) \end{aligned}$	C1 A1	Allow alternative methods e.g. triangle of forces Allow ECF from graph if used
		Total	6	
4	i	$(\text { force }=) \frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \epsilon_{0} \times\left(1.0 \times 10^{-15}\right)^{2}}$ $(F=) 230(N)$ $\begin{aligned} & F^{2}=230^{2}+230^{2}-2 \times 230 \times 230 \\ & \times \cos 120^{\circ} \end{aligned}$ or $\begin{aligned} & F=2 \times 230 \cos 30^{\circ} \\ & F=400(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { C1 } \end{aligned}$	Special case: $F=\frac{Q q}{4 \pi \epsilon_{0} r^{2}}=\frac{2 \times 1.6 \times 10^{-19}}{4 \pi \epsilon_{0} \times\left(1.0 \times 10^{-15}\right)^{2}}$ loses this C1 mark, then ECF for the rest of the marks Not the first two C1 marks for incorrect charge, then allow ECF for the final C1A1 marks Note force to 4 SF is 230.2 N Allow sine rule / scale drawing Allow this mark for $230 \cos 30^{\circ}$ or $200(\mathrm{~N})$ Allow $\pm 10(\mathrm{~N})$ if scale drawing used

		ii	F/ arrow vertical up the page	B1	Allow correct arrow direction anywhere on the figure
		Strong (nuclear) force (acts on the protons) ii i The strong (nuclear) force is attractive	B1	Ignore gravitational force	
B1	Allow pulls / holds (the protons) / binds (the protons) for 'attractive'				
		Total	$\mathbf{7}$		

